Abstract—The 3-D-printed electromagnetic encoders based on permittivity contrast are presented and discussed in this article. The encoders, implemented using exclusively dielectric materials, are based on linear chains of dielectric inclusions. Two types of encoders are considered: 1) those where the inclusions are simple apertures made on a 3-D-printed dielectric plate (or substrate) and 2) those with inclusions made of high dielectric constant material 3-D-printed on a dielectric substrate (also 3-D-printed). In both cases, encoding is achieved by varying the dielectric constant of the substrate at predefined positions by means of the inclusions. For encoder reading, a microstrip line loaded with a slot resonator (etched in the ground plane) and a series gap is proposed. Such structure is very sensitive to short range dielectric constant variations, being able to detect the presence or absence of closely spaced inclusions when the encoder is displaced on top of the sensitive part of the reader, the slot resonator. For that purpose, the reader line is fed by a harmonic signal conveniently tuned, so that an amplitude-modulated (AM) signal containing the identification (ID) code is generated at the output port of the line. The proposed reader/encoder system is useful for motion control applications (linear displacement and velocity sensors) and for near-field chipless-radio frequency ID (RFID). Lower cost and major robustness against mechanical wearing are potential advantages of these encoders over other electromagnetic encoders based on a similar principle but based on metallic inclusions.

Index Terms—3-D printing, additive manufacturing, chipless-radio frequency identification (RFID), microstrip technology, microwave encoder, motion control, slot resonators.

I. INTRODUCTION

RECENTLY, electromagnetic encoders have been proposed as a low-cost alternative to optical encoders. In optical encoders, a grid of apertures in a metallic plate is used for coding purposes. The presence or absence of apertures during encoder motion is detected by means of an optical beam, and information relative to the displacement and velocity (either linear or angular) of the encoder can be inferred on the basis of pulse counting [1]–[3]. Optical encoders with very high resolution are available in the market and are of high interest in many industrial applications related to motion control (e.g., elevators, servomechanisms, and automotive industry).

Despite the fact that it is difficult to compete against optical encoders in terms of spatial resolution (dictated by the grid period), such encoders have two main drawbacks: their cost (as well as the cost of the optical source and detector) and their limited robustness when they are subjected to certain harsh environments, e.g., with pollution, dirtiness, or grease, among others. The cost of the source/detection system can be reduced by using radiofrequencies (RFs) or microwaves, rather than optical signals. However, the use of the RF/microwave spectrum needs a different strategy for encoder implementation. In [4]–[17], the proposed electromagnetic encoders were fabricated by etching or printing a chain of metallic inclusions (typically resonators or strips) on a dielectric substrate. In applications where mechanical robustness is required and the cost of the encoder is not critical, e.g., motion control, rigid substrates are preferable [4]–[7]. However, low-cost flexible substrates (including plastic or paper) can be used in applications where the cost of the encoder is a critical issue [10]–[13]. This applies to chipless-RF identification (RFID), where ultralow-cost encoders (or tags) can be fabricated by printing the metallic inclusions through inkjet printing, or by means of massive fabrication processes (such as rotogravure, screen-printing, offset, and so on). Although the cost of commercially available conductive inks is moderately high, a very small quantity of ink suffices for tag fabrication. Thus, the price of printed encoders implemented on plastic or paper substrates is situated below the cost of chip-based tags, and, obviously, much below the cost of optical encoders.

As compared with optical encoders, electromagnetic encoders may offer major levels of confidence in certain industrial scenarios where the presence of contaminants or pollution may jeopardize the necessary cleanliness and transparency of optical apertures. In chipless-RFID applications, the absence of chip in the tags (replaced by the metallic encoder) not
only reduces costs, but it may also represent a good solution in scenarios subjected to extreme temperatures or radiation (e.g., integrated circuits exhibit limited radiation hardness). However, encoders based on printed metallic patterns may be subjected to wearing and aging effects that may limit their long-life use. Note that wearing may be caused by unexpected contacts (due, e.g., to vibration) between the encoder and the sensitive part of the reader (a RF/microwave component able to detect the presence of metallic inclusions through near field).

In [18], we proposed a new type of low-cost electromagnetic encoders, based exclusively on dielectric materials, and thereby robust against wearing and aging effects. In such encoders, the metallic chains of printed (or etched) resonant elements or strips are replaced with apertures in the substrate. Since the electromagnetic properties of the apertures (in particular the dielectric constant) are different from those of the substrate, such apertures are useful for coding purposes, as demonstrated in [18].

In [18], the functionality of all-dielectric electromagnetic encoders based on permittivity contrast was demonstrated. However, the period of the apertures chain, similar to the size of the sensitive element of the reader, a complementary spiral resonator (CSR), was not optimized. Reduction of such period is fundamental, since it dictates the sensor resolution (in the measurement of displacements and velocities) and the per unit length data density (a key parameter in encoders based on chains of inclusions for its use as chipless-RFID tags). In this article, by designing (and optimizing) a completely new reader (i.e., the sensitive part), based on a linearly-shaped slot resonator, it is demonstrated that the period of the encoders can be substantially reduced. Moreover, we report not only all-dielectric encoders based on apertures (with linear shape), but also permittivity contrast encoders consisting of chains of high dielectric constant inclusions on top of a flexible dielectric substrate. In both cases, the encoders are fully fabricated through additive manufacturing by means of a 3-D printer. All these aspects represent a significant extension and added contribution with regard to the idea and results first presented in [18]. Indeed, all the simulated and experimental results presented in this article, as well as the reader and the different 3-D-printed encoders, are original. Moreover, to the best of our knowledge, it is the first time that 3-D-printed electromagnetic encoders are reported.

The proposed 3-D-printed all-dielectric encoders are of interest for motion control applications, and for near-field chipless-RFID. In the former application, thick additive manufactured encoders based on periodically located apertures are suitable for measuring the relative position and velocity between the encoder and the reader. In this application, system robustness (related to the rigidity and hence thickness of the encoder) is a critical aspect. By contrast, in near-field chipless-RFID, encoder cost must be as much reduced as possible. For this reason, encoder implementation by 3-D-printing dielectric inclusions on a narrow and flexible substrate (also 3-D-printed) is the preferred option for this second application.

This article is organized as follows. The principle of operation of the proposed all-dielectric permittivity contrast encoders is presented in Section II. Section III focuses on the design of the sensitive part of the reader, a microstrip line loaded with slot resonator and series gap. The design is supported by a lumped element circuit model and by full-wave electromagnetic simulations. Section IV deals with the design of the encoders. System validation is reported in Section V, where the functionality of the encoders as displacement/velocity sensors and chipless-RFID tags is demonstrated. This section also includes the description of the 3-D-printing process and the considered materials. In Section VI, a discussion related to the advantages and limitations of the proposed 3-D-printed encoders, as compared with other encoders, is reported. Finally, the main conclusions are highlighted in Section VII.

II. WORKING PRINCIPLE

In the printed electromagnetic encoders based on metallic patterns reported in [4]–[17], a sensitive element able to detect the presence/absence of functional metallic elements (the inclusions) in the encoder chain was used for reading purposes. Specifically, encoder reading was carried out through near field, using a transmission line-based structure, where such transmission line is typically loaded with a resonator (or resonators) sensitive to the presence of metallic elements in their surroundings.

Similarly, in all-dielectric encoders based on permittivity contrast, an element able to detect, through near field, the presence/absence of dielectric inclusions (on the basis of dielectric constant variation) is needed [18]. For that purpose, a high-sensitive permittivity sensor able to detect local changes in the permittivity of the encoder is a due. In [18], the permittivity contrast encoder was implemented by means of square apertures on a microwave (rigid) substrate, and the sensing element of the reader was a microstrip line loaded with a CSR, etched in the ground plane.

In this article, a different sensing transmission line-based structure, compatible with the detection of smaller (in the direction of the chain axis) dielectric inclusions, is proposed. Nevertheless, the principle is the same; namely, the presence of the inclusions on top of the sensitive element (a resonator) modifies the frequency response of the structure. Therefore, through encoder motion, an amplitude-modulated (AM) signal at the output port is generated, provided the line is fed with a conveniently tuned harmonic signal. The envelope of such AM signal, which can be obtained by means of an envelope detector, contains the relevant information, either relative to the displacement/velocity or to the identification (ID) code. For the measurement of the displacement and velocity, all the inclusions are present at the predefined positions in the encoder chain. Thus, the quasi-instantaneous velocity is determined from the time distance between adjacent peaks, or dips, in the envelope function, whereas the displacement is inferred from the cumulative number of peaks, or dips. In the functionality of the encoder as a chipless-RFID tag, only those dielectric inclusions associated with the logic level ‘1’ are present. Thus, the ID code is sequentially obtained by reading the envelope function at predefined time windows, where the amplitude of
the envelope function determines the logic state, or bit, of the corresponding encoder position. The schematic of the system is shown in Fig. 1. It is worth mentioning that the frequency of the interrogation signal, f_c, must be tuned to a value providing a large excursion in the transmission coefficient, since this enhances the modulation index, hence representing major robustness against misalignments between the encoder and the reader or mechanical vibrations. An important difference of the proposed system, as compared with frequency domain [19]–[39], hybrid [40] –[51], and time-domain reflectometry (TDR) [52]–[65] chipless-RFID systems, is the fact that a single harmonic signal suffices for tag reading. By contrast, frequency sweeping and a pulsed signal are required for tag reading in the frequency-domain (and hybrid) and TDR-based chipless-RFID systems, respectively. This represents further costs associated with the necessary electronics for the generation of the interrogation signal and for signal processing. Thus, in the proposed system, based on the amplitude modulation of the interrogation signal by encoder motion, low-cost readers are envisaged, representing a clear advantage over the traditional frequency-domain and TDR-based chipless-RFID systems.

As compared with previous electromagnetic encoders based on chains of metallic elements [4]–[17], the advantage of the proposed all-dielectric permittivity contrast encoders lies in the encoder side (rather than in the cost of the reader). Since conductive inks are not used, permittivity contrast encoders are more robust against wearing and aging effects. Moreover, implementing the encoders by means of apertures or dielectric inclusions is in general cheaper, as compared with metallic inclusions (either etched or printed through conductive inks).

III. READER DESIGN AND ANALYSIS

In the use of the encoder as displacement and velocity sensor, it is convenient to reduce the channel period as much as possible, since such period dictates the spatial resolution. Thus, a sensitive element able to detect dielectric constant variations within small ranges is required. Note that a small encoder period is also convenient for ID purposes, in order to enhance the data density per unit length (DPL). In this article, the proposed sensing element is a microstrip line loaded with a transverse (linearly shaped) slot resonator and with a series capacitive gap. The slot resonator is very sensitive to variations in the dielectric constant of the material in contact with it, or surrounding it. Moreover, its elongated shape is very interesting in order to consider dielectric encoder inclusions of similar shape, thereby providing short dimensions in the direction of the chain axis, as required in near-field chipless-RFID systems with sequential bit reading. The topologies of the reader and encoder with all inclusions present at their predefined positions are shown in Fig. 2.

Note that the type of encoders shown in Fig. 2 cannot be easily read with a sensing element based on a microstrip line loaded with a CSR, as it was carried out in [18], or with a complementary split ring resonator (CSRR). The reason is the elongated shape of the inclusions, unable to significantly modify the capacitance of the sensing resonant element (either CSR or CSRR), and consequently its resonance frequency. For this reason, the considered dielectric inclusions in [18] (apertures) exhibit a square shape and size comparable with the one of the CSR of the reader. By contrast, since the capacitance of the slot resonator is mainly determined by the dimensions of the narrow and long slot, and by the surrounding materials, it is expected that the presence of the inclusions shown in Fig. 2 on top of the slot resonator significantly alters the capacitance and resonance of the sensing particle (the slot).

In addition, the slot resonator exhibits higher sensitivity to resonance frequency variation, as compared with the one of the CSR or the CSRR. To demonstrate this, the lumped element equivalent circuit models of the slot- and CSR-loaded (or CSRR-loaded) microstrip line are considered (see Fig. 3). In these models, L_s and C_s are the inductance and capacitance, respectively, of the bare resonators (i.e., without any material
on top of it, or surrounding it), and \(C\) describes the coupling capacitance between the line and the CSR, or CSRR, in the corresponding circuit model. If we now consider that the resonant element is covered by a material under test (MUT), with dielectric constant \(\varepsilon_{\text{MUT}}\), and that the thickness of such material is significantly larger than the transverse dimensions of the slots, the resonance frequency is given by [66]

\[
f_0 = \frac{1}{2\pi} \left[\frac{1}{L_c} \left(C + C_c \frac{\varepsilon_r + \varepsilon_{\text{MUT}}}{\varepsilon_r + 1} \right) \right]^{-1/2}
\]

where \(\varepsilon_r\) is the dielectric constant of the substrate (note that \(C = 0\) pF for the slot-loaded line). The validity of (1) is also restricted to a substrate thickness much larger than transverse slot dimensions. These limitations relative to a minimum substrate and MUT thickness are necessary to guarantee that the electric field lines generated in the slots do not reach the opposite interface of the substrate or MUT, a necessary condition to express the slot capacitance of the resonator as shown in (1). In general, the presence of a thick enough MUT (or dielectric inclusion, the case of actual interest in this work) cannot be ensured. Nevertheless, this does not represent a loss of generality concerning the conclusions of the present analysis.

The relative sensitivity of resonance frequency with variations in the dielectric constant of the MUT is given by

\[
S = \frac{1}{\frac{d f_0}{f_0}} \frac{d \varepsilon_{\text{MUT}}}{d \varepsilon_{\text{MUT}}}
\]

and after some simple algebra, the following result is obtained:

\[
S = -\frac{1}{2} \frac{C_c}{C_c(\varepsilon_r + \varepsilon_{\text{MUT}}) + C(\varepsilon_r + 1)}
\]

According to (3), the sensitivity increases by reducing \(C\), and therefore, it can be concluded that it is optimized in the slot-loaded line (where \(C = 0\), as mentioned). Indeed, in this case, the relative sensitivity is found to be determined only by the dielectric constants of the substrate and MUT, according to

\[
S = -\frac{1}{2(\varepsilon_r + \varepsilon_{\text{MUT}})}
\]

and it increases by decreasing the dielectric constant of the substrate (\(\varepsilon_{\text{MUT}}\) is not a design parameter).

For our purposes, we do not only need high frequency sensitivity, but also a high \(Q\)-factor. The reason is that the excursion of the transmission coefficient at the design (interrogation) frequency, which depends on both parameters, is expected to be enhanced by increasing \(S\) and \(Q\). Note that a strong variation of the resonance frequency with \(\varepsilon_{\text{MUT}}\) (corresponding to high values of \(S\)) is not efficient in terms of transmission coefficient variation at a fixed frequency, if the bandwidth of the resonance is high (low \(Q\)-factor). Similarly, a high \(Q\)-factor (narrow notches) does not suffice to guarantee a minimum excursion of the transmission coefficient, if \(S\) is small. Thus, both \(S\) and \(Q\) need to be as large as possible. Decreasing \(\varepsilon_r\) enhances \(S\), but it also reduces the \(Q\)-factor, as far as the resonator capacitance decreases.

The solution to this problem is to add an element to the slot-loaded line, i.e., a series gap, as shown in Fig. 2. The circuit model including the series gap is shown in Fig. 4, where \(C_s\) is the capacitance of the gap and \(C_f\) accounts for the fringing capacitances. By including the series gap, a reflection zero (or transmission peak) located to the left of the resonance frequency of the slot is introduced. The reflection zero frequency is the one providing an image impedance, \(Z_I\), identical to the reference impedance of the ports, \(Z_0\). For a \(\pi\)-network with series impedance \(Z_s\) and shunt impedance \(Z_p\), the image impedance is given by [67]

\[
Z_I = Z_p \sqrt{\frac{Z_s}{Z_0 + 2Z_p}}
\]

and the condition for total transmission (\(Z_I = Z_0\)) is

\[
Z_s = 2Z_0^2Z_p \left(\frac{Z_s}{Z_0} - \frac{Z_p}{Z_0} \right).
\]

In general, the fringing capacitance is small, providing a large value of \(Z_p\). Thus, the reflection zero (or transmission peak) frequency can be approximated by the frequency satisfying \(Z_s = 0\), that is

\[
f_r = \frac{1}{2\pi} \left[\frac{1}{L_c} \left(C_s + C_c \frac{\varepsilon_r + \varepsilon_{\text{MUT}}}{\varepsilon_r + 1} \right) \right]^{-1/2}
\]

By choosing a small value of the capacitance \(C_s\), the transmission peak can be situated very close to the transmission zero. According to (1) and (7), the presence of an MUT in contact to the slot resonator decreases both frequencies. Consequently, by setting the interrogation signal frequency to the peak frequency of the line loaded with the bare slot (i.e., \(f_r = f_{\pi}(\varepsilon_{\text{MUT}} = 1)\), it is expected to achieve a large excursion of the transmission coefficient when the slot resonator is

Fig. 3. Circuit model of (a) slot-loaded line and (b) CSR- or CSRR-loaded line. \(Z_0\) and \(k_l\) are the characteristic impedance and electrical length, respectively, of the access lines.

Fig. 4. Circuit model of the slot-loaded line with series gap. Access lines are excluded in this model.
loaded with a certain MUT (even in the case that the MUT is separated from the slot by an air gap, as required in a real scenario to avoid mechanical friction). By this means, the Q-factor of the slot resonator is not altered, but an abrupt transition in the response to the left of the transmission zero is achieved.

In the designed reader, the reflection and transmission zero frequencies with unloaded slot resonator are set to $f_r = 3.85$ GHz and $f_0 = 4.49$ GHz, respectively. This does not determine univocally the element values of the circuit model of the slot-loaded line with series gap, but this is an advantage, rather than a drawback, since extreme geometrical values can be avoided. For the design of the sensitive part of the reader, the following procedure has been followed. We have set the width of the slot to the minimum value (a convenient strategy to minimize the period of the dielectric inclusions, or encoder, chain). To enhance the Q-factor, the inductance of the slot should be minimized, since the bandwidth of the slot resonator is proportional to L_c/C_c. For this reason, the considered topology of the sensitive resonator is a linear slot, rather than a dumbbell-shaped defect ground structure (DB-DGS). By tuning the slot length, we are able to vary its resonance frequency. Therefore, the length of the slot is dictated by the required resonance frequency, $f_0 = 4.49$ GHz, as indicated before. Then, the gap distance is tuned until the reflection zero with bare reader, $f_r|_{\text{MUT}=1}$, is located as close as possible to the transmission zero and the value of the transmission coefficient at $f_c = f_r|_{\text{MUT}=1}$ is around -5 dB [see Fig. 5(a)]. Such value is reasonable in order to obtain a large excursion of the transmission coefficient experienced by tag motion. It has been found that by setting $f_r|_{\text{MUT}=1} = 3.85$ GHz, the value of -5 dB for the insertion loss is roughly obtained.

With the previous procedure, the dimensions indicated in the caption of Fig. 2 have been obtained (the considered reader substrate is the Rogers RO4003 with thickness $h = 1.524$ mm, dielectric constant $\varepsilon_r = 3.55$, and loss tangent $\tan\delta = 0.0021$). Fig. 5(b) shows the response of the unloaded structure inferred from lossless full-wave electromagnetic simulation using Keysight Momentum. This response is compared with the response obtained by circuit simulation of the lumped model (also without losses), where the extracted parameters (indicated in the caption) have been considered. The agreement is very good, pointing out the validity of the model. Then, we have simulated (including losses) the response by considering the slot loaded with a dielectric slab of thickness 0.635 mm, dielectric constant $\varepsilon_{\text{MUT}} = 10.2$, and loss tangent $\tan\delta = 0.0027$ (corresponding to the commercial Rogers RO3010 substrate with such parameters), separated 0.2 mm (air gap) from the slot [see Fig. 5(a)]. As expected, the overall response is shifted downward, and a significant excursion of the transmission coefficient at the operating frequency, shown in the caption of Fig. 5, is achieved.

IV. ENCODER DESIGN

In a first step toward the experimental validation of the proposed reader/encoder system (to be discussed in Section IV), we have considered an all-dielectric encoder implemented by opening narrow apertures on the MUT of the previous section (Rogers RO3010 substrate, with $h = 0.635$ mm and $\varepsilon_r = 10.2$). In order to determine the dimensions of the apertures and their separation, we have carried out a set of electromagnetic simulations including losses. In the first simulations, we have considered a single aperture of 24-mm length (identical to the length of the slot resonator), and we have simulated the frequency responses that result by varying the aperture width, with perfectly aligned aperture and slot. The results are shown in Fig. 6(a), whereas Fig. 6(b) shows the variation of the transmission coefficient at the operating frequency $f_c = f_r|_{\text{MUT}=1}$ is 14.3 dB.
In order to determine the length of the apertures, we have carried out electromagnetic simulations by decreasing the length from the nominal value (in all the cases the width set to 0.4 mm). The results, shown in Fig. 7, indicate that length reduction has negligible effect on the response, at least within the considered range. Therefore, the length of the apertures has been set to 18 mm, i.e., 6 mm shorter than the slot length.

Finally, in the third subset of electromagnetic simulations, we have analyzed the effects of aperture separation by considering a pair of apertures with the previously indicated dimensions, and variable distance. In this case, the two apertures are situated equidistantly from the slot resonator. The responses obtained from electromagnetic simulation by increasing the aperture separation are shown in Fig. 8(a), whereas Fig. 8(b) shows the transmission coefficient at f_c.

As expected, by increasing the aperture separation, the response tends to the one of the reader loaded with a uniform substrate. Reducing the apertures separation favors encoder resolution and data density, but at the expense of smaller dynamic range (or excursion of the transmission coefficient at f_c). Thus, we have set the aperture separation to 3 mm. With this value, the period of the apertures chain is 3.4 mm, and the transmission coefficient at f_c is around -21 dB [see Fig. 8(b)]. This provides a variation in the transmission coefficient at the operating frequency (with and without aperture on top of the slot resonator) of roughly 14 dB, as shown in Fig. 9. This figure shows the simulated transmission coefficient at f_c, obtained by displacing a four-aperture encoder over the slot resonator. This excursion of the transmission coefficient is enough to provide a high modulation index, as required to read the encoder.

V. EXPERIMENTAL VALIDATION

A. Validation With Aperture-Based Encoder Implemented on Commercial Microwave Substrate

The photograph of the fabricated reader and the one of a fabricated 50-aperture encoder (implemented on the Rogers RO3010 substrate with thickness 0.635 mm, dielectric constant $\varepsilon_{\text{MUT}} = 10.2$, and loss tangent $\tan \delta = 0.0027$) are shown in Fig. 10. In this first prototype encoder, all the apertures are present, since its potential application (considering the nonnegligible cost of the considered encoder material)
is the measurement of the relative displacement and velocity between the reader and the encoder.

Before encoder reading, we have measured the response of the fabricated bare reader and the one with the considered substrate on top of the slot resonator (at 0.2 mm from it). Such responses, shown in Fig. 5, show a good agreement with the lossy electromagnetic simulations. Particularly, the simulated and measured reflection zero frequencies coincide to a good approximation.

For encoder reading, the frequency of the interrogation signal has been set to such (measured) reflection zero frequency, i.e., \(f_c = 3.85 \) GHz. As shown in Fig. 11, such interrogation signal is generated by means of a function generator (model Agilent E4438C), while an oscilloscope (model Agilent MSO-X 3104A) is used to visualize the envelope function of the encoders. The relative motion between the reader and the encoder is achieved by means of a linear stepper motor (model THORLABS LTS300/M). Finally, the envelope detector has been implemented by means of a Schottky diode (model Avago HSMS-2860), an active prove (model Agilent N2795A) with resistance and capacitance \(R = 1 \) M\(\Omega \) and \(C = 1 \) pF, respectively, and an isolator (model ATM PNR ATc4-8) in order to prevent from unwanted reflections from de diode.

Fig. 11. Experimental setup used for encoder reading.

Fig. 12. Measured envelope function for the fabricated 50-aperture encoder.

The measured envelope function is shown in Fig. 12. From the distance between adjacent peaks, or dips (both perfectly visible), the relative velocity between the encoder and the reader is inferred, provided that the encoder period is well known. The displacement from a reference position is given by the cumulative number of periods in the envelope function, measured from that position. According to the results of Fig. 12, the averaged velocity over 10 periods has been found to be 20.09 mm/s, i.e., very similar to the nominal value (20 mm/s).

B. 3-D-Printing Process and Materials

Let us now consider the implementation of 3-D-printed encoders. For encoder fabrication, the Ultimaker 3 Extended 3-D printer has been used. Fused filament fabrication (FFF) is the manufacturing technology used in such 3-D printer. This is a 3-D-printing process that uses a continuous filament of a thermoplastic material. According to specifications [68], this 3-D-printer provides a lateral and vertical resolution of 12.5 and 2.5 \(\mu m \), respectively. PLA Polylactic acid and RS Pro MT-Copper are the considered filaments used to fabricate the encoders. Before encoder fabrication, the electromagnetic properties of such filaments, i.e., the dielectric constant and the loss tangent, have been determined. To this end, the resonant cavity Agilent 85072A has been used. Square samples of 60-mm side length with a thickness of 1 mm have been 3-D-printed with both types of filaments (these slab dimensions are those recommended by Agilent). The measured
dielectric constant and loss tangent of \textit{PLA Polyactic acid} are $\varepsilon_r = 3$ and $\tan\delta = 0.010$, respectively, whereas for \textit{RS Pro MT-Copper}, the values that have been obtained are $\varepsilon_r = 7.6$ and $\tan\delta = 0.015$. As will be shown next, such dielectric constant values are adequate to implement the two types of 3-D-printed permittivity contrast encoders considered in this article. We would like to mention that the resonant cavity \textit{Agilent 85072A} is especially suited for the measurement of the permittivity and loss tangent of low-loss and thin film materials. Thus, for \textit{RS Pro MT-Copper} (with copper content of 80\% according to specifications), the loss tangent value inferred from the resonant cavity may be questionable. For this reason, we have compared the estimated loss tangent obtained by the resonant cavity with the one determined by means of a nonresonant transmission-line based method \cite{69}. The measured loss tangent of \textit{RS Pro MT-Copper} provided in \cite{69} is roughly 0.016, which is in a good agreement with the value obtained by means of the resonant cavity. Nevertheless, regardless of the loss factor and dielectric constant of \textit{RS Pro MT-Copper}, the functionality of the fabricated encoders is demonstrated, as it will be shown in the following sections.

C. Validation With Aperture-Based 3-D-Printed Encoders

Similar to the encoder shown in Fig. 10, in the first 3-D-printed encoder implementation, the inclusions are also apertures, but made on a 3-D-printed dielectric plate during fabrication. In this case, the considered filament is \textit{RS Pro MT-Copper}. Since the value of the dielectric constant of this material is not very different from the one of the dielectric substrate of the encoder of Fig. 10, we expect that by fabricating 3-D-printed encoders with identical aperture dimensions and separation (see Fig. 13), the same reader can be useful for reading purposes. Fig. 14 shows the envelope function of the 3-D-printed 15-aperture encoder that has been inferred using the reader of Fig. 10, as well as the experimental setup used for reading the previous encoder. The presence of the apertures is clearly discerned as peaks in the envelope function. Therefore, the functionality of these 3-D-printed encoders is demonstrated, as it will be shown in the following sections.

D. Validation With 3-D-Printed Encoders Based on Dielectric Inclusions

In the second 3-D-printed encoder realization, the inclusions are made of a high dielectric constant material 3-D-printed on a dielectric substrate (also 3-D-printed). Thus, the substrate has been printed using \textit{PLA Polyactic acid}, whereas the inclusions are strips of printed \textit{RS Pro MT-Copper}. Before encoder implementation, we have simulated the transmission coefficient at f_c, achieved by displacing a four-inclusion encoder over the slot resonator at 0.07-mm distance (air gap). The result, shown in Fig. 9, indicates that by reducing the air gap to 0.075 mm, it is possible to obtain a significant excursion of the transmission coefficient, necessary to properly read the encoder. In fact, the most important parameter influencing the performance of the proposed system is the air gap distance between the reader and the encoder. As the air gap increases, obviously, the reader is more insensitive to the presence of the encoder, and the dynamic range decreases. The effects of the air gap variation on the excursion of the transmission coefficient are shown in Fig. 15. According to these results, the guiding system for encoder motion should ensure a maximum air gap of the order of 0.1 mm, while the encoder is being displaced over the sensitive part of the reader (this seems to be feasible in a real scenario).

The photograph of a set of 3-D-printed 15-bit encoders with different ID codes is shown in Fig. 16, where dimensions are indicated (see caption). We have read these encoders by
HERROJO et al.: 3-D-PRINTED HIGH DATA-DENSITY ELECTROMAGNETIC ENCODERS BASED ON PERMITTIVITY CONTRAST

For this same reason, the response shown in Fig. 9 corresponding to the encoder based on MT-copper inclusions is complementary to the one of the encoder based on apertures.

VI. DISCUSSION

As compared to the all-dielectric encoders reported in [18], the proposed encoders exhibit a smaller period. This has direct impact on spatial resolution in the application of the reader/encoder system as linear displacement sensor. Concerning the data density per unit surface (DPS) and DPL, the achieved values are DPS = 1.66 bit/cm² and DPL = 2.99 bit/cm (50% higher as compared with the design proposed in [18]), respectively. As discussed in [15] and [16], the DPL (rather than the DPS) is the key data density parameter in encoders based on chains of inclusions, and intended to be used as near-field chipless-RFID tags. The reason is that the shape factor is extremely elongated if the number of bits is high and the DPL is moderate or small. Therefore, the reduction of the period of all-dielectric encoders is essential for both applications. For that purpose, the strategy has been to consider a reader able to detect the presence or absence of very small inclusions in the direction of the chain axis (i.e., transversally oriented linear apertures or dielectric strips). Note that the width of the inclusions in the encoders reported in this article is as small as 0.4 mm. Nevertheless, the required separation between the inclusions, for proper discernment of their presence or absence, is 3 mm (as it has been justified in the previous section), providing an encoder period of 3.4 mm. This period is not as small as the one achieved in encoders based on chains of transversally oriented metallic strips [15], [16], where a period as small as 0.6 mm was achieved. The reason is that metals are more efficient than dielectrics in modifying the capacitance of a resonant element through noncontact. Namely, since dielectrics do not “absorb” the electric field lines, as metals do, they need more spatial extension than metals in order to produce the same capacitance (and hence resonance frequency) variation.

According to the previous words, the reported all-dielectric permittivity contrast encoders cannot compete against encoders based on metallic inclusions (etched or printed) in terms of resolution and data density. However, metallic elements are sensitive to wearing and aging effects, potentially caused by chafing and rubbing. Thus, the reported encoders are a good option in applications where a long-life use is required, at the expense of more limited performance as compared with the metallic-based encoders.

Concerning encoder cost, the estimated material cost of the 3-D-printed encoder based on apertures is 0.05 € (using MT-copper), whereas the material cost of the one fabricated on the Rogers substrate is 4.78 €. On the other hand, with regard to the encoders based on dielectric inclusions, the cost of the materials (PLA Polylactic acid and RS Pro MT-Copper) is roughly two orders of magnitude cheaper than the cost of conductive inks (in this case the comparison should be made with tags based on printed metallic inclusions), since the cost of 1 kg of ceramic-based filaments used and the Dupont PE410 conductive ink (which
was used in [13] by the authors) are around 80 and 14000 €, respectively. However, inkjet-printed metallic tags on ordinary paper substrates (as demonstrated in [13]) are very cheap, owing to the cost of ordinary paper, and to the fact that an extremely small amount of ink, i.e., a single layer, suffices for tag functionality. Nevertheless, the estimated material cost of the 3-D-printed 15-bit encoder based on dielectric inclusions is 0.04 €, while the estimated material cost of 15-bit inkjet-printed encoder on ordinary paper is 0.12 €. This aspect demonstrates that all-dielectric encoders are cheaper than encoders based on metallic inclusions. Specifically, the cost of all-dielectric encoders corresponds to a reduction of roughly 67% of the cost of metallic-inclusion based encoders.

The implementation of 3-D-printed all-dielectric encoders on paper substrate is left for future works. Nevertheless, it should be considered that 3-D-printing encoding can be directly carried out during manufacturing of 3-D-printed products, e.g., by generating an ID code based on apertures or on dielectric inclusions. This does not represent an extra production cost, and, at the same time, the use of a dedicated tag is avoided. Obviously, the use of optical barcodes is a very low-cost alternative (extremely extended nowadays). However, such barcodes may be subjected to wearing, can be manipulated, and their data capacity is limited. By contrast, in the proposed encoders, the number of bits is only limited by encoder size and encoder implementation in the considered item or product offers very high robustness against mechanical wearing and exposure to harsh environments (e.g., contacting the products with water or liquids does not deteriorate the encoder). Thus, the reported 3-D-printing approach for encoder fabrication may be of interest in various scenarios. To the best of our knowledge, it is the first time that 3-D-printed all-dielectric electromagnetic encoders based on permittivity contrast are reported.

VII. CONCLUSION

In conclusion, full 3-D-printed all-dielectric electromagnetic encoders based on permittivity contrast have been reported in this article. The encoders consist of a chain of dielectric inclusions on a host dielectric material with significantly different dielectric constant. We have considered two types of encoders: 1) those where the inclusions are simple apertures and 2) those where the inclusions are high dielectric constant materials. For encoder reading, a specifically designed reader based on a microstrip line loaded with a slot resonator (the sensitive part) and a series gap has been used, and the functionality of the system for 3-D-printed encoders with 3.4-mm resolution has been demonstrated. These encoders can be used as sensing elements for motion control applications (to measure the relative displacement and velocity between the encoder and the reader), or as tags in near-field chipless-RFID applications, where the presence or absence of inclusions at predefined positions is used for coding purposes. Major robustness against mechanical wearing and aging, as compared with electromagnetic encoders based on printed metallic inclusions, is an advantage of the reported encoders. The cost of the considered 3-D-printing materials is by far smaller than the one of commercial conductive inks. Thus, low-price encoders can be implemented through the reported approach, at least as compared with rigid encoders based on commercial microwave substrates. For certain 3-D-printed products (e.g., those based on dielectric materials), the reported encoders can be directly implemented during manufacturing of the item to be tagged. This is an additional, and important, advantage, as far as dedicated tags are avoided, object coding does not represent extra production costs, and item exposure to aggressive or hostile environments does not jeopardize the functionality of the encoders. For instance, direct encoding of 3-D-printed objects during manufacturing provides an intrinsically water-resistant encoding system.

REFERENCES

Cristian Herrojo (Member, IEEE) was born in Badalona (Barcelona), Spain, in 1983. He received the Telecommunications Engineering Diploma degree (specializing in electronics), the Telecommunications Engineering degree, and the Ph.D. degree in electronics engineering from the Universitat Autònoma de Barcelona, Catalonia, Spain, in 2004, 2006, and 2012, respectively.

His research interests include RF/microwave devices, chipless-RFID and RFID technology, and metamaterials.

Jordi Bonache (Member, IEEE) was born in Cardona (Barcelona), Spain, in 1976. He received the Physics and Electronics Engineering degrees and the Ph.D. degree in electronics engineering from the Universitat Autònoma de Barcelona, Catalonia, Spain, in 1999, 2001, and 2007, respectively.

In 2000, he joined the High Energy Physics Institute, Barcelona, where he was involved in the design and implementation of the control and monitoring system of the MAGIC telescope. In 2001, he joined the Department of Electronics Engineering, Universitat Autònoma de Barcelona, where he is currently Professor of Electronics. From 2006 to 2009, he was an Executive Manager with CIMITEC, Bellaterra, Spain, where he is also a Project Manager and leads the research on RFID and antennas. His current research interests include active and passive microwave devices, metamaterials, antennas, and RFID.

Ferran Paredes (Member, IEEE) was born in Badalona (Barcelona), Spain, in 1983. He received the Telecommunications Technical Engineering degree in electronic systems, the Telecommunications Engineering degree and the Ph.D. degree in electronics engineering from the Universitat Autònoma de Barcelona, Catalonia, Spain, in 2004, 2006, and 2012, respectively.

His research interests include RF/microwave devices, chipless-RFID and RFID technology, and metamaterials.

Ferran Martin (Fellow, IEEE) was born in Barakaldo, Spain, in 1965. He received the B.S. degree in physics and the Ph.D. degree from the Universitat Autònoma de Barcelona (UAB), Barcelona, Spain, in 1988 and 1992, respectively.

From 1994 to 2006, he was an Associate Professor of Electronics at the Departament d’Enginyeria Electrònica, UAB, where he has been a Full Professor of Electronics, since 2007. He is currently active in the development of microwave sensors for dielectric characterization and motion control, and also in the topic of chipless-RFID. He is also the Head of the Microwave Engineering, Metamaterials and Antennas Group (GEMMA Group). UAB. He is also the Director of CIMITEC, a Research Center on Metamaterials. In 2010, he was the recipient of the ICREA ACADEMIA Awards (calls 2008, 2013 and 2018, Parc de Recerca UAB – Santander Technology Transfer Institute, Barcelona, where he was involved in the design and implementation of the control and monitoring system of the MAGIC telescope. In 2001, he joined the Department of Electronics Engineering, Universitat Autònoma de Barcelona, where he is currently Professor of Electronics. From 2006 to 2009, he was an Executive Manager with CIMITEC, Bellaterra, Spain, where he is also a Project Manager and leads the research on RFID and antennas. His current research interests include active and passive microwave devices, metamaterials, antennas, and RFID.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on May 08,2020 at 08:13:32 UTC from IEEE Xplore. Restrictions apply.