Microwave/millimeter wave sensors

Frequency-Coded and Programmable Synchronous Electromagnetic Encoders Based on Linear Strips

Amirhossein Karami-Horestani, Ferran Paredes, and Ferran Martín

CIMITEC, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Abstract—This letter presents electromagnetic encoders where encoding is achieved by considering four different inclusions, particularly linear strips of different length, etched at the predefined positions of the encoder chain, and transversely oriented with regard to the chain axis. Since the length of the strips determines their resonance frequencies, it follows that the 2-bits per inclusion, corresponding to the four possible different states (strip lengths), are frequency-coded. Thus, the reader is a microstrip line with a series gap fed by four harmonic (carrier) signals tuned to the resonance frequencies of the four considered encoder strips. By encoder motion over the reader, each carrier signal is amplitude modulated, with envelope functions exhibiting a peak each time a strip of the encoder chain tuned to the resonance frequency of the considered carrier signal crosses the axis of the reader line. The functionality of the system is experimentally validated in this letter. It is also shown that the encoders can be programmed by considering identical strips and by cutting them appropriately, according to the desired code. The proposed encoders are intrinsically synchronous. Such encoders are useful for measuring displacements and velocities, as well as for the implementation of synchronous near-field chipless radiofrequency identification tags with sequential bit reading.

I. INTRODUCTION

Electromagnetic encoders are an alternative to optical [1]–[3] and magnetic encoders [4]–[6]. The main advantage of electromagnetic encoders as compared to optical encoders is their superior robustness against the presence of dirtiness, grease, or pollution, present in many industrial environments. As compared to magnetic encoders, that typically need inductive coils, or to Hall effect sensors [7]–[12], based on magnets, electromagnetic encoders are relatively simple and low-cost, as far as electromagnetic encoders are based on a movable element consisting in a low-cost dielectric material with printed (typically metallic) inclusions, and the stator (or reader) is a transmission line structure conveniently fed by a harmonic signal, or a set of harmonic signals.

Both rotary [13], [14] and linear [15]–[21] electromagnetic encoders have been presented. Moreover, it has been shown that linear electromagnetic encoders can be applied not only in motion control systems (as linear displacement/velocity sensors), but also for the implementation of near-field chipless radiofrequency identification (chipless-RFID) systems with sequential bit reading [15]–[17], [21]–[23]. A key performance parameter in electromagnetic encoders for both applications (displacement/velocity sensor and near-field chipless-RFID) is the per-unit-length density of bits. This provides the spatial resolution in displacement sensors and the data capacity that can be accommodated in a certain encoder length in chipless-RFID tags.

Another important aspect in electromagnetic encoders is synchronous reading. This typically requires at least two encoder chains, one of them with all the inclusions present at their predefined positions, providing the clock signal (as well as the encoder velocity), and the other one providing the identification (ID) code [19], [20]. In the latter case, only a subset of functional inclusions is present at the predefined positions, in accordance to the specific ID code. Synchronous reading might be important in chipless-RFID systems, in situations where the encoder velocity over the reader is not precisely known (for example, if the tags are read manually). On the other hand, in displacement and velocity sensors, quasi-absolute measurements can be made by assigning a specific ID code to the whole encoder. If such complete ID code follows the so-called de Bruijn sequence [24], any subset of N adjacent bits does not repeat and each encoder position has a unique ID code, determined by the corresponding bit plus the $N–1$ preceding bits. The number of bits of the subset, N, must satisfy

$$N > \log_2 \frac{L}{P}$$

where L is the total length of the encoder, and P is the period, or position resolution. These electromagnetic encoders equipped with the de Bruijn sequence are designated as quasi-absolute in the sense that the encoder must displace N periods after a system reset in order to determine the absolute position. This represents a slight disadvantage as compared to the so-called absolute (optical) encoders (where such “initial” displacement is not needed), but quasi-absolute encoders are not based on accumulative pulse counting, such as incremental encoders (i.e., those not equipped with an ID code) do [13].

In this letter, we report a proof-of-concept of a synchronous electromagnetic encoder based on a single chain of inclusions, particularly linear metallic strips transversely oriented with regard to the chain axis. An inclusion is always present at the predefined position of the chain, and this provides synchronism to the system. However, the length of the inclusions may vary between four different values, corresponding to four different states and, consequently, to two bits of information per inclusion. By this means, the density of bits per unit length (DPL) is twice the one of those tags simply based on
II. PROPOSED ENCODER SYSTEM AND WORKING PRINCIPLE

Fig. 1(b) depicts a typical encoder, consisting in a chain of transversally oriented metallic strips (inclusions) of different length. In this letter, four different strip lengths are considered, corresponding to two bits per inclusion. For encoder reading, an element able to detect the different lengths of the strips is necessary. This can be achieved by means of a transmission line with a series gap [Fig. 1(a)]. Such gap prevents signal transmission between the input and the output port. However, when a strip is on top of the line and aligned with the line axis, such strip behaves similar to a half wavelength resonator, and a peak in the frequency response arises. Thus, by simultaneously feeding the line with four harmonic signals tuned to the resonance frequencies of the different strips, the specific strip length, when the encoder is displaced over the reader at short distance, can be detected. For each (carrier) frequency, one expects that the amplitude is modulated by encoder motion. Specifically, the amplitude of a certain carrier signal is expected to be high when the strip tuned to that frequency is on top of the line axis. This aspect is intimately related to the loaded quality factor of the strip resonators, which depends on the width of the strip, on the air gap, or vertical distance between the reader line and the encoder chain (it is assumed in this letter that the strips of the encoder are oriented face-to-face with the reader line), and also on the dielectric and metal losses. The estimated loaded quality factor is of the order of 13, 18, 17, and 19 for the four resonators from the longest to the shortest, respectively. Nevertheless, the presence of adjacent strips, as actually occurs in the encoder, may play a role, especially if the period is small.

In order to reduce the encoder period as much as possible, it is convenient to achieve as much peaked frequency responses as possible, when the strips are on top of the line axis. This aspect is intimately related to the loaded quality factor of the strip resonators, which depends on the width of the strip, on the air gap, or vertical distance between the reader line and the encoder chain (it is assumed in this letter that the strips of the encoder are oriented face-to-face with the reader line), and also on the dielectric and metal losses. The estimated loaded quality factor is of the order of 13, 18, 17, and 19 for the four resonators from the longest to the shortest, respectively. Nevertheless, the presence of adjacent strips, as actually occurs in the encoder, may play a role, especially if the period is small.

Thus, to analyze the influence of the air gap and strip width, we have first carried out electromagnetic simulations (by means of the Ansys HFSS electromagnetic solver) of the transmission coefficient for each carrier frequency as a function of the displacement for the considered 8-bit encoder of Fig. 1(b), considering the air gap as a parameter. Note that the period of such encoder is $p = 2 \, \text{mm}$, corresponding to a per-unit-length bit density of 10 bit/cm, a competitive value for a synchronous encoder. The results are depicted in Fig. 3. It can be seen that for air gaps of 0.5, 1.0, and 1.5 mm, the capacity of discrimination of the proposed system is very reasonable. Particularly, it can be appreciated that when a certain strip resonator is on top of the line axis, at the frequency of such resonator the transmission is high, whereas at the other frequencies, it decreases significantly, and this occurs for the four strip resonators. Nevertheless, for an extremely small air gap of 0.2 mm, this discrimination capability is limited. Thus, it is convenient to set the air gap separation at least to 0.5 mm.

In a second set of simulations, we have set the air gap to 0.5 mm, and we have obtained the transmission coefficient for each carrier frequency as a function of the displacement for the considered 8-bit encoder of Fig. 1(b), parameterized by the width of the strips. However, the results are roughly indistinguishable from those of Fig. 3(b), with a strip width set to 0.5 mm, the nominal value of the encoders of this letter (hence, these simulations are not depicted). This means that, at least for the considered air gap separation (0.5 mm, the nominal one), the strip width does not have a significant influence.

III. EXPERIMENTAL RESULTS

For experimental validation, rather than the 8-bit encoder of Fig. 1(b), we have fabricated a 40-bit encoder consisting in a chain of 20 identical strip resonators (the length of such strips is the longest one). Then, we have made cuts on different resonant strips, thereby generating new ID codes by programming the encoders. Obviously, the cuts are made in positions that provide new strip resonators of one of the considered lengths. The tag before cutting and those that result after each step of cutting are shown in Fig. 4. Fig. 5 depicts the envelope functions of the different generated 40-bit encoders. There is a perfect correlation between the responses (envelope functions) and the strips of the different encoders. Consequently, with these results, the functionality of the system is experimentally validated.

IV. COMPARISON TO OTHER ENCODERS

There are several synchronous electromagnetic encoders available in the literature [17], [19]–[21] (Table 1). As compared to such encoders,
Fig. 3. Simulation of the transmission coefficient for the resonance frequencies of the four strip resonators of the encoder, as a function of the encoder displacement, considering the air gap as a parameter. (a) Air gap 0.2 mm. (b) Air gap 0.5 mm. (c) Air gap 1.0 mm. (d) Air gap 1.5 mm. The considered encoder is depicted in Fig. 1, with a period set to $p = 2$ mm, and strip width set to 0.5 mm.

Fig. 4. Tag before cutting and after each step of cutting.

![Figures and diagrams](image)

Table 1. Comparison of Various Electromagnetic Encoders

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Sync.</th>
<th>Direction detection</th>
<th>DPS (bit/cm²)</th>
<th>DPL (bit/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[17]</td>
<td>Yes</td>
<td>No</td>
<td>1.15</td>
<td>1.67</td>
</tr>
<tr>
<td>[19]</td>
<td>Yes</td>
<td>Yes</td>
<td>1.63</td>
<td>6.96</td>
</tr>
<tr>
<td>[20]</td>
<td>Yes</td>
<td>Yes</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td>[21]</td>
<td>Yes</td>
<td>No</td>
<td>0.89</td>
<td>2.5</td>
</tr>
<tr>
<td>[15]</td>
<td>No</td>
<td>No</td>
<td>26.0</td>
<td>16.7</td>
</tr>
<tr>
<td>[25]</td>
<td>No</td>
<td>No</td>
<td>4.90</td>
<td>16.7</td>
</tr>
<tr>
<td>This letter</td>
<td>Yes</td>
<td>No</td>
<td>3.34</td>
<td>10</td>
</tr>
</tbody>
</table>

V. CONCLUSION

In conclusion, a new type of electromagnetic encoders providing synchronous reading with a single inclusions’ chain and a per-unit length data density of DPL = 10 bit/cm has been experimentally demonstrated. Such high data density has been achieved by virtue of the small encoder period (related to the use of narrow linear strips), and thanks to frequency encoding of the inclusions, a strategy that doubles the number of bits per inclusion.
ACKNOWLEDGMENT

This work was supported in part by the MICINN—Spain under Grant PID2019-103904RB-I00, in part by the MCIN/AEI/Spain 10.13039/501100010133 and European Union “Next Generation EU”/PRTR under Grant PDC2021-121085-I00, in part by the Generalitat de Catalunya under Grant 2017SGR-1159, in part by the ICREA (who awarded Ferran Martín), and in part by the ERDF funds. The work of A. Karami-Horestani was supported by the MCIN/AEI/10.13039/501100010133 and ESF under Grant PRE2020-093239.

REFERENCES